skip to main content


Search for: All records

Creators/Authors contains: "Ye, Zuyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Achieving a crucial balance between heating performance and biocompatibility in the design of magnetic nanoparticles for nanowarming is key to overcoming hurdles in cryopreserved organ storage.

     
    more » « less
    Free, publicly-accessible full text available August 21, 2024
  2. The quadrupolar field created by opposing magnets was used to assemble particles into chiral superstructures. 
    more » « less
    Free, publicly-accessible full text available June 30, 2024
  3. Controlled growth of islands on plasmonic metal nanoparticles represents a novel strategy in creating unique morphologies that are difficult to achieve by conventional colloidal synthesis processes, where the nanoparticle morphologies are typically determined by the preferential development of certain crystal facets. This work exploits an effective surface-engineering strategy for site-selective island growth of Au on anisotropic Au nanostructures. Selective ligand modification is first employed to direct the site-selective deposition of a thin transition layer of a secondary metal, e.g., Pd, which has a considerable lattice mismatch with Au. The selective deposition of Pd on the original seeds produces a high contrast in the surface strain that guides the subsequent site-selective growth of Au islands. This strategy proves effective in not only inducing the island growth of Au on Au nanostructures but also manipulating the location of grown islands. By taking advantage of the iodide-assisted oxidative ripening process and the surface strain profile on Au nanostructures, we further demonstrate the precise control of the islands’ number, coverage, and wetting degree, allowing fine-tuning of nanoparticles’ optical properties. 
    more » « less
  4. null (Ed.)
  5.  
    more » « less
  6. Abstract

    Solar steam generation technologies have gained increasing attention due to their great potential for clean water generation with low energy consumption. The rational design of a light absorber that can maximize solar energy utilization is therefore of great importance. Here, the synthesis of Ni@C@SiO2core–shell nanoparticles as promising light absorbers for steam generation by taking advantage of the plasmonic excitation of Ni nanoparticles, the broadband absorption of carbon, and the protective function and hydrophilic property of silica is reported. The nanoparticle‐based evaporator shows an excellent photothermal efficiency of 91.2%, with an evaporation rate of 1.67 kg m−2 h−1. The performance can be further enhanced by incorporating the nanoparticles into a polyvinyl alcohol hydrogel to make a composite film. In addition, utilizing the magnetic property of the core–shell particles allows the creation of surface texture in the film by applying an external magnetic field, which helps increase surface roughness and further boost the evaporation rate to as high as 2.25 kg m−2 h−1.

     
    more » « less